Curriculum
CURRICULUM OVERVIEW
The doctoral program provides training in the Computational Sciences as applied to and contextualized in the Health Sciences. Students will develop deep competency in framing and addressing pressing real-world questions in the biomedical and public health communities using computational methods.
Computational Sciences
AI, machine learning, parallel computing and data at scale, algorithms, numerical analysis, natural language processing, knowledge representation; principles of statistical inference and modeling, statistical computing, estimation and inference with high dimensional sparse data, loss-based estimation and cross validation, formal causal inference; health informatics: electronic health records, data standards, privacy, IT policy, interoperability.
Health Sciences
Through program activities to provide context for computational problems in the field of CPH, students are introduced to the health sciences, including clinical decision sciences and cognitive informatics: e.g., diagnosis, treatment planning, decision support systems, evidence-based medicine, medical ontologies; clinical delivery: learning health systems, patient-centered care, etc.; clinical research: decentralized (mobile) clinical trials, hyper-personalized studies (e.g., N-of-1, Just-in-Time Adaptive Interventions (JITAI)), implementation science; health information policy: e.g., data sharing during pandemics.
Students will:
- Complete coursework at both the UCSF and UC Berkeley campuses
- Have a “home campus” that matches the home campus of their PhD advisor
- Have access to resources on both campuses
Required Courses
CPH 200A, B and C: Computational Precision Health Cornerstone course series (3 semester units x 2 terms)
This course series uses Problem-Based Learning to build student ability to work effectively in interdisciplinary teams, from ideation to development, testing, and validation in the real world.
CPH 201: Computational Precision Health Practicum (2 semester units x 2 terms)
This series, taken during year two of the program, augments the Cornerstone to provide deep exposure to the clinical and public health context in which CPH advances are to be deployed. Students will have in-depth, real-world exposure to clinical, research, and operational work in inpatient, outpatient, community health, and/or public health settings.
CPH 215: Lab Rotations (at least 4 units)
Students will take two 10-week research group rotations in their first year. One rotation will be in a lab on each campus; one rotation will be in a predominantly computational science “lab” (with a health emphasis) and one in a health science “lab” (with a computational emphasis).
CPH 270: Computational Precision Health Doctoral Seminar (2 semester units x 6 terms)
Students will enroll in six terms of the doctoral seminar, including the first two terms after matriculation. Seminar will consist of journal club-style discussion of recent literature in computational precision health, talks by guest faculty, and presentations by second and third year students on work in progress.